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Introduction 
 

Livestock breeding, with the increase of today's 
nutritional problems, has brought with it the need for 
rapid progress in production processes. The genetic 
gain of the population subject to selection must be 
achieved in a shorter time than with conventional 
methods such as progeny testing (PT) in dairy cattle. 
Genomic selection (GS) may shorten the generation 
interval (GI), an important factor in terms of genetic 
gain for a given time and GI in cattle is equivalent to an 
average of 5.5 years in classical progeny testing 
program. However, this period can be reduced by 
almost half with GS methods (Schaeffer 2006). 

Genomic selection has been used since the 
beginning of the 21st century, but it can be observed 
that the number of genotyped animals has become 

more and more economical in the last decade in the 
countries that have access to the genotyping process  

(Wiggans et al. 2017). Although this is a preferred point, 
computational times seem to be a more restrictive 
problem in terms of efficiency than the times in the 

earlier methods. In other words, the technological 
increase in the available information has also created the 
need for advanced technology in calculations 
(computations/computational hardwares)(Tsurata et al. 
2021).  

One of the problems encountered in GS in some 
countries is that when the number of SNP is less than the 
number of genotyped animals, the genomic relationship 

matrices (GRM) turn into a singular (non-invertable) 
structure and they have to be combined with the A matrix 

and included in the analysis (Misztal et al. 2020). Genomic 
selection has come to a point where it can be preferred 
despite all the difficulties in the field of animal breeding, 
since it has the convenience of making a decision by 
taking blood even from the fetus or embrios.   

Several methods have been developed for the 
formation of GRMs, but GRMs have been obtained 

mainly by using SNP information. In the context of the 
Human Genome Project (IHGSC 2001). Due to the fact 
that these SNPs are scattered throughout the genome, 

GS has been used in breeding value estimation as a useful 
method in today's conditions, as it is consistent with the 
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Abstract 
Since genomic prediction is widely used in dairy cattle, we aimed to evaluate the 
performance of pedigree based (ABLUP), SNP based (GBLUP) and single-step GBLUP (ss-
GBLUP) methods with different sets of information in terms of reliability of genomic 
prediction. Four different methods were evaluated: (Method 1) ABLUP with all available 
phenotypes and pedigree; (Method 2) GBLUP with SNP genotypes and phenotypes of 
genotyped cows; (Method 3) single-step GBLUP with SNP genotypes, phenotypes of 
genotyped cows and all pedigree and (Method 4) single-step GBLUP with SNP genotypes, 
all phenotypes of both genotyped and nongenotyped cows and all pedigree.  SNP based 
methods also used different genomic relationship matrices (GRMs) formed by different 
approaches: vanRaden, Astle, Yang and Endelman.  The simulated dataset replicates a 
common dairy cattle population.  
A significant increase in reliability of prediction was observed in ss-GBLUP with all 
phenotypes and pedigree beside genotyped cows. This increase was apparent for both 
first lactation milk yield (LMY) and milk fat percentage (Fat%). Combining all available 
information with ss-GBLUP gave about 1.6 and 1.2 times higher reliabilities for LMY and 
Fat%, respectively, compared to those obtained from the other three methods.  
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Table 1. The structure of simulated data  

 Pedigree 

Information 

SNP-effect  

Phenotype 

#Cow #Sire* 

Gen 01 Yes No No 2200 200 

Gen 1 Yes No Yes 2200 200 

Gen 2 Yes Yes Yes 2000 - 

*No records, just have pedigree 

1Gen 0-2: generation 0 to 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henderson relationship matrix (A) performs 

calculations based on the probability of gametic 
identity. It takes into account that each animal inherits 
a set of chromosomes from its ancestors and performs 
calculations for sets of chromosomes from common 
ancestor(s). The other GRMs, on the other hand, 
encode the markers as “0” for major homozygotes, “1” 
for heterozygotes and “2” for minor homozygotes as 

the basic framework, even though they are specifically 
separated. This is obtained by subtracting the mean 

from the coded matrix and dividing the variance of the 
SNPs by the total variance of the SNPs according to the 
equal/different number condition.  

The vanRaden-GRM has been used most widely in 
genomic selection studies. This matrix subtracts the 

marker matrix from the expected values. The expected 
values computed by each calculated SNP frequencies 

from the sample or assuming the base population are 
known SNP frequencies, and divides it by 2pq, 
considering that the variance of the SNPs is equal and 
multiplied by the 2pq coefficient (vanRaden 2008):  

𝐺𝑅𝑀 =
𝑍𝑍′

2∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑚
𝑖

 

The Z matrix is the centered marker matrix and is 
the substraction of the marker matrix from a matrix of 
expected values of the SNPs. In this GRM, the diagonal 
elements correspond to 1+f. This is indeed inclined and 

consistent with the theory of inbreeding, measure of 
homozygosity in an individual. Additionally, the mean 
of the diagonal elements corresponding to 1+f is 

calculated to be 1. The correlation of inbreeding 
coefficients obtained with this matrix and inbreeding 

coefficients obtained by the classical method was 
calculated as 0.63 (vanRaden 2008) 

basic theories of quantitative genetics (Meuwissen et al. 
2001).  

This study aimed to investigate the effects of four 
methods with GRMs formed by different approaches on 
the reliabilities of genomic estimated breeding values 
(GEBV). 

Materials and Methods 
Data sets 

The data considered in this study were simulated for 
3 discrete generations. The structure of data is given in 
Table 1 and has been generated according to the 

optimized scenario for the first lactation of Holstein 

dairy cattle by the steps below and the simulation study 
was performed in R environment (R Core Team 2022). 
The assumptions were: 

 First lactation milk yield and fat percentage 
distributed as:  

 

𝑀𝑉𝑁~([
11000
3.4

] , [
7954975 −37.7904
−37.7904 0.0067

]) 

 

 Heritabilities of the traits are 0.17 and 0.30, 

respectively, 

 Genetic correlation between traits is -0.80, 

 3 generations data were simulated:  
- Base population: 2200 dams without 

phenotypes and without SNP-genotypes 
- First generation: 2200 cows with 

phenotypes, without SNP-genotypes, and 
they were the progeny of the dams in the 
base population, 

- Second generation: 2000 cows with 
phenotypes and with SNP-genotypes, they 

were the progeny of the dams(cows) in the 
first generation,     

 Each dam has one and female progeny (cow), 

 Sires have average of 10 progeny and no 

phenotypic record, 

 54K SNP were simulated and each SNP has only 
additive effect, 

 SNPs were mapped with reference to the 

bovine genome, 
 
Method 

In this study, the reliabilities of genomic predictions 

using different methods with different GRMs 
(Henderson, vanRaden, Astle, Yang, Endelman) 
developed by Henderson (1976), vanRaden (2008), Astle 
and Balding (2009), Yang et al. (2010) and Endelman and 
Jannink (2012) were compared. GRMs are based on 

pedigrees and/or SNP markers and each matrix 
calculation has the property of being idenditical by 
descent or state with additive relations. The Henderson 
relationship matrix (A) was used in classical ABLUP and 
single-step-genomic-BLUP (ss-GBLUP) analyses, while 

the other matrices were used in genomic-BLUP (GBLUP) 
and ss-GBLUP analyses. 
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Here it is assumed that u's are u~MVN(0, g), and 
e's are e~MVN(0, R). R and g matrices are covariance 

matrices and the elements of the matrices are 
calculated with REML algorithms. It is also assumed 
that there is no correlation among genetic effects 
and the environmental effects: 

 
 

𝑐𝑜𝑣 [

𝑔1

𝑔2
𝑒1
𝑒2

] = [

𝑔11𝐺
𝑔21𝐺
0
0

𝑔12𝐺
𝑔22𝐺
0
0

0
0
𝑟11
𝑟21

0
0
𝑟12
𝑟22

] 

 

 
The analyzes were carried out using the rrBLUP 

(Endelman 2011) and Sommer (Covarrubias-Pazaran 
2016) packages. Genomic parameters were 
estimated with four different methods: 

Method 1: ABLUP: used full pedigree and all 
available records in the data, 
Method 2: GBLUP: used only SNP-genotypes and the 
phenotypes of genotyped cows,  
Method 3: ss-GBLUP: used full pedigree, SNP-
genotypes and phenotypes of genotyped cows, 
Method 4: ss-GBLUP: used full pedigree, SNP-
genotypes and all available phenotypes.   
Heritability and genetic correlation were estimated 
and the reliabilities of breeding value estimates were 
compared. The reliability formula is given below and 
the accuracies are the square root of the reliability 
of the predictions: 
 
 

 

𝑅𝐸𝐿𝑖 = 1 −
𝑃𝐸𝑉

𝑉𝑔
 

where, 
𝑅𝐸𝐿𝑖 = reliability of estimated breeding value of ith 
cow, 

𝑃𝐸𝑉 = prediction error variance, 
𝑉𝑔 = additive genomic variance. 

 

 

The Endelmen-GRM has almost the same structure 
as the vanRaden-GRM. The only difference is that 

instead of taking the expected value the matrix, it 
assumes that the expected values of the SNPs are 0.5. 
The operations used in a GRM of this structure are no 
different from those in the vanRaden-GRM. These 
GRMs appear as the most appropriate predictors when 
the mean squared error is considered under one 
condition, which is when the number of markers is 
greater than the number of genotyped animals 
(Endelman and Jannink 2012). 

Astle-GRM approach takes the kinship coefficients 

into account in the calculations of the GRM and 
handles the loci one by one. Although this matrix 
layout is not considered very suitable in animal 
breeding, it is used in plant breeding or human genetics 
studies. One more iteration to make unbiased of p at 

the expected value 2p and the p's can be recalculated. 
Negative values in the diagonal elements of the G 

indicate that less alleles are shared than the expected 
in line with the given p's (Astle and Balding 2009):  

 

 

𝐺𝑅𝑀𝑖,𝑗 =
1

𝐿
∑

(𝑥𝑙 − 2𝑝𝑙1)(𝑥𝑙 − 2𝑝𝑙1)
𝑇

4𝑝𝑙(1 − 𝑝𝑙)

𝐿

𝑙

 

 
Yang-GRM follows an approach that is very similar 

to the Astle method. The difference between them is 
that for an unbiased estimate of the inbreeding 
coefficient in the diagonal elements, the variance of 
SNPs is considered to be different, so that each SNP 
variance is affected by p (Yang et al. 2010). They 

divided the matrix into two elements, diagonal and off-
diagonal, the expected value of the off-diagonal and 
diagonal elements will be zero and 1, respectively: 

 

1

𝑁
∑ 𝐺𝑖𝑗𝑘

𝑖
=

{
 
 

 
 

1

𝑁
∑

(𝑥𝑖𝑗 − 2𝑝𝑖)(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)
, 𝑗 ≠ 𝑘

𝑖

1

𝑁
∑

𝑥𝑖𝑗
2(1 + 2𝑝𝑖)𝑥𝑖𝑗 + 2𝑝𝑖

2

2𝑝𝑖(1 − 𝑝𝑖)
, 𝑗 = 𝑘

𝑖

 

 

In our study, the simulated data were subjected to 
multi-trait-BLUP analyzes. 
The mixed model equation used is as follows (Mrode, 

2014): 
 
 

[

𝜇 1
𝜇 2
𝑢 1
𝑢 2

] =

 
 
 
 
 
𝑋1

𝑇𝑅11𝑋1

𝑋2
𝑇𝑅21𝑋1

𝑍1
𝑇𝑅11𝑋1

𝑍2
𝑇𝑅21𝑋1

𝑋1
𝑇𝑅12𝑋2

𝑋2
𝑇𝑅22𝑋1

𝑍1
𝑇𝑅12𝑋2

𝑍2
𝑇𝑅22𝑋1

𝑋1
𝑇𝑅11𝑍1

𝑋2
𝑇𝑅21𝑍1

𝑍1
𝑇𝑅11𝑍1 + 𝐺−1𝑔11

𝑍2
𝑇𝑅21𝑍1 + 𝐺−1𝑔21

𝑋1
𝑇𝑅12𝑍2

𝑋2
𝑇𝑅22𝑍2

𝑍1
𝑇𝑅12𝑍1 + 𝐺−1𝑔12

𝑍2
𝑇𝑅22𝑍2 + 𝐺−1𝑔22 

 
 
 
 

−1

 
 
 
 
 
𝑋1

𝑇𝑅11𝑦1 + 𝑋1
𝑇𝑅12𝑦2

𝑋2
𝑇𝑅21𝑦1 + 𝑋2

𝑇𝑅22𝑦2

𝑍1
𝑇𝑅11𝑦1 + 𝑍1

𝑇𝑅12𝑦2

𝑍1
𝑇𝑅21𝑦1 + 𝑍1

𝑇𝑅22𝑦2 
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Table 2. The descriptive statistics of simulated traits  

Trait N Mean Median Min Max SD CV% 

Fat% 4200 3.40 3.40 3.12 3.69 0.082 2.40 

LMY 4200 10980.95 10950.77 1595.36 20457.09 2700.168 24.50 

LMY: lactation milk yield; Fat%: milk fat percentage; N: number of observations used; Min: minimum value; Max: 

maximum value; SD: standard deviation; CV%: coefficient of variation 

 

 

 

 

 

 

Table 3. Genomic relationships based on different GRMs for the animal F10_3 with its some halfsibs 

ith animal jth halfsib Henderson Endelman vanRaden Astle Yang 

F10_3 F181_3 0.25 0.238 0.238 0.232 0.232 

F10_3 F489_3 0.25 0.247 0.247 0.239 0.238 

F10_3 F608_3 0.25 0.199 0.199 0.198 0.198 

F10_3 F729_3 0.25 0.231 0.231 0.221 0.220 

F10_3 F930_3 0.25 0.270 0.270 0.265 0.264 

F10_3 F1370_3 0.25 0.169 0.169 0.164 0.163 

 

Table 4. Heritabilities and genomic correlations 

Method LMY Fat% rG 

ABLUP Henderson 0.152 0.272 -0.617 

 

GBLUP1  

or  

ss-GBLUP 

 

vanRaden 0.155 0.282 -0.533 

Astle 0.151 0.279 -0.518 

Yang 0.153 0.275 -0.523 

Endelman 0.155 0.282 -0.533 

LMY: lactation milk yield; Fat%: milk fat percentage; h2: heritability; rG: eklemeli genomic correlation; ABLUP: used 

pedigree and phenotypes (from generation 0 to 2); GBLUP: used SNP-genotypes and phenotypes (in generaion 2 only)  
1GBLUP and ss-GBLUP produced the same results 

because a sire has the ability to mate with more than 
one cow in a given time. The probability of these 
siblings being geneticaly related to each other is 25% 
if it is considered with the Henderson-A. Even 
though this possibility changes with crossing over, 

the general expectation is in this direction.  

Results 

Descriptive statistics of first lactation milk yields 
(LMY) and milk fat percentage (Fat%) of 4200 dairy 

cattles from 2200 and 2000 cows in generation 1 
(Gen1) and generation 2 (Gen2), respectively, are 

shown in Table 2.  
In dairy cattle, half-sib family structure is very 

common 

Since SNP-based GRMs are based on observations 
rather than probability, they also take crossingover 
into account and it allows one to make more valid 
predictions. Comparisons of coefficient in different 
GRMs of a half-sib family with a random individual 
within the family are given in Table 3. Genomic  

 
 

relationship among halfsibs varies around the classical 
expectation of 0.25.  

The heritability and genomic correlations are given 
in Table 4. All methods slightly underestimated the 

heritabilities, however underestimation was more 
drastic for genomic correlation. It can be attributable 

to the number of observation simulated in this study.  
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Table 5. Descriptive statistics of reliability estimates of genotyped cows from different methods for the first 
laktation milk yield (LMY) 

 Mean Min Max S.D. 

 Henderson 0.281 0.206 0.302 0.009 

 Method 2 Method 3 Method 4 
 Mean Min Max S.D. Mean Min Max S.D. Mean Min Max S.D. 

vanRaden 0.272 0.145 0.315 0.013 0.272 0.145 0.315 0.013 0.417 0.348 0.447 0.009 

Astle 0.262 0.126 0.309 0.016 0.262 0.126 0.309 0.016 0.412 0.340 0.449 0.010 

Yang 0.264 0.139 0.302 0.012 0.264 0.139 0.302 0.012 0.412 0.346 0.439 0.008 

Endelman 0.272 0.145 0.315 0.013 0.272 0.145 0.315 0.013 0.417 0.348 0.447 0.009 

 

 

 

Table 6. Descriptive statistics of reliability estimates of genotyped cows from different methods for the milk 
fat percentage (Fat%) 

 Mean Min Max S.D. 

 Henderson 0.362 0.305 0.383 0.009 

 Method 2 Method 3 Method 4 

 Mean Min Max S.D. Mean Min Max S.D. Mean Min Max S.D. 

vanRaden 0.373 0.284 0.414 0.012 0.373 0.284 0.414 0.012 0.464 0.413 0.495 0.009 

Astle 0.367 0.271 0.410 0.014 0.367 0.271 0.410 0.014 0.461 0.406 0.496 0.010 

Yang 0.363 0.273 0.399 0.012 0.363 0.273 0.399 0.012 0.461 0.411 0.487 0.008 

Endelman 0.373 0.284 0.414 0.012 0.373 0.284 0.414 0.012 0.464 0.413 0.495 0.009 
 

The reliabilities obtained from four methods with 
different GRMs for the first lactation milk yield (LMY) 

and milk fat percentage (Fat%) are given in Table 5 and 
Table 6, respectively. For LMY, reliability estimates 
were close but lower using Method 2 and 3 (varied 

from 0.126 to 0.315) than that of obtained from 
classical approach (Henderson ABLUP) (0.281). 
However, Method 4 gave more higher reliabity 
estimtes (varied from 0.340 to 0.447) coparing to the 
other three methods. For Fat%, reliability estimates 

were close but higher using Method 2 and 3 (varied 
from 0.271 to 0.414) than that of obtained from 
classical approach (Henderson ABLUP) (0.362). 
However, Method 4 provided much higher reliability 

(between 0.406 and 0.496) compared to the other 
three methods. 
 

Phenotypes of nongenotyped cows in the first 
generation improved the reliabilities of the estimations 
for genotyped cows in the second generation 

dramaticaly in the ss-GBLUP analyses (Method 4). 
Presence of the phenotype and pedigree information 
of the dams of genotyped cows were contributed 
significantly to the reliability of the predictions for the 

both trait evaluated. Moreover, ss-GBLUP with full 
pedigree and all available phenotypes produced higher 
reliabily estimates for Fat% with smaller standard 

deviation than for LMY with larger standard deviation. 
Combining all available information with ss-GBLUP 

gave about 1.6 and 1.2 times higher reliabilities for LMY 
and Fat%, respectively, compared to those obtained 
from ABLUP (Method 1), GBLUP (Method 2) or ss-

GBLUP (Method 3) using only phenotypes of 
genotyped cows.  
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Using different GRMs, formed in four different 

approaches, did not make any significant effect on the 
reliabilities of genomic prediction. All four approaches 
(vanRaden, Astle, Yang, Endelman) yielded almost the 
same results. 
 

Discussion 
The genomic prediction reliability of the methods 

using GRM and only the phenotype of the genotyped 
cows was slightly higher for Fat% than that of the 
conventional ABLUP approach, but slightly lower than 

that for LMY. This could be due to the fact that Fat% 
was simulated with a low standard deviation and a high 
heritability, while LMY had a high standard deviation 
and a low heritability. Moreover, using only 

phenotypes of genotyped animals (GBLUP/Method 2) 
or all pedigree (ss-GBLUP/Method 3) did not make an 
noteworthy change in the results. However, a 
significant degree of superiority was found among the 
methods. Including phenotypes of nongenotyped 

animals into the analyses (ss-GBLUP/Method 4) 
dramatically improved the reliability estimates of 
genomic prediction. This results are consistant with 

previous studies (Christensen and Lund 2010; Gray et 
al. 2012). 
Another important finding of this study is that the 
reliability of genomic prediction is almost the same 

regardless of which GRM (vanRaden, Astle, Yang, or 
Endelman) is used. 
 
Conclusions 
 

The ss-GBLUP method, which considers the entire 
pedigree, genomic information and phenotypes of 
genotyped and non-genotyped cows, provides higher 
realiability of genomic prediction compared to 
traditional BLUP (ABLUP) and the other methods that 

use only genotyped individuals.  
 
Author contributions 
 
All authors contributed equally to this study. 

 
Conflicts of interest 
 
The authors declares that they have no known 

competing financial or non-financial, professional, or 
personal conflicts that could have appeared to 
influence the work reported in this paper. 

 
References 
 
Astle, W., Balding, D. J. (2009). Population Structure 

and Cryptic Relatedness in Genetic Association 

Studies." Statistical Science, 24(4) 451-471. 

https://doi.org/10.1214/09-STS307 

https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1093/genetics/157.4.1819


Livestock Studies 62(2): 58-64 
 

64 

 

  Seno, L., Guidolin, D., Aspilcueta-Borquis, R., 
Nascimento, G., Silva, T., Oliveira, H., & Munari, D. 
(2018). Genomic selection in dairy cattle simulated 
populations. Journal of Dairy Research, 85(2), 125-
132. https//doi.org/10.1017/S0022029918000304 

Tsuruta, S. , Lourenco, D.A.L., Masuda, Y. , Lawlor, T.J. , 
Misztal, I. (2021) Reducing computational cost of 

large-scale genomic evaluation by using indirect 
genomic prediction, JDS 
Communications,2(6),356:360. 
https://doi.org/10.3168/jdsc.2021-0097 

VanRaden, P.M. (2008) Efficient Methods to Compute 

Genomic Predictions, Journal of Dairy Science 
91(11) 4414-4423. 
https://doi.org/10.3168/jds.2007-0980. 

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, 
Nyholt DR, Madden PA, Health AC, Martin NG, 

Montgomery GW, Goddard ME, Visscher 
PM.(2010) Common SNPs explain a large 
proportion of the heritability for human height. 
Nature Genet., 42,565–569. 
https://doi.org/10.1038/ng.608. 

Wiggans, G. R. , Cole, J. B. , Hubbard, S. M., Sonstegard, 
T. S. (2017) Genomic Selection in Dairy Cattle: The 

USDA Experience, Annu Rev Anim Biosci.5:309-327. 
https://doi.org10.1146/annurev-animal-021815-
111422 

 
 

      https://doi.org/10.1016/j.livsci.2014.04.029. 
Meuwissen, T. H. , Hayes, B. J. , Goddard, M. E. (2001) 

Prediction of total genetic value using genome-
wide dense marker maps. Genetics.157(4):1819-
1829. 
https://doi.org/10.1093/genetics/157.4.1819.  

Misztal, I. , Lourenco, D. , Legarra, A. (2020) Current 
status of genomic evaluation, Journal of Animal 

Science, 98(4) , skaa101. 
https://doi.org/10.1093/jas/skaa101 

Mrode, R. A. (2014) Linear models for the prediction of 

animal breeding values, CABI, Wallingford, 
Oxfordshire. 

Pérez-Cabal, M. A. , Vazquez, A. I. , Gianola D. , Rosa G. 
J. , Weigel K. A. (2012) Accuracy of Genome-
Enabled Prediction in a Dairy Cattle Population 
using Different Cross-Validation Layouts. Front 
Genet. 3(27). 

https://doi.org/10.3389/fgene.2012.00027 
R Core Team (2020). R: A language and environment 

for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. 
https://www.R-project.org/ 

Schaeffer, L.R. (2006) “Strategy for applying genome-
wide selection in dairy cattle”, Journal of Animal 
Breeding and Genetics, 123(4) 218-223. 
https://doi.org/10.1111/j.1439-
0388.2006.00595.x.  


