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Introduction 
 

Additive genetic variance generally accounts for 
most or all of total genetic variance in complex traits 
(Van Tessel 2000; Nagy et al. 2013). Nonetheless, there 
is a long-standing controversy and paradox about the 

importance of non-additive genetic effects in breeding 
programs. For example, some authors argue that the 
prediction of genetic response may be biased upwards 
if non-additive genetic variances are not included in 
genetic models (Cheverud, & Routman 1995; Carlborg & 
Haley 2004; Hallander & Waldmann 2007). In addition, 
many authors have reported that accounting for non-
additive effects in the genetic effects might improve the 

estimation of additive effects, resulting in less biased 

prediction (e.g., Wittenburg et al. 2011; Colleen et 

al.2013; Powell et al. 2013). 
Interactions between genes are known to be 

common and are a key concept for understanding 
adaptation and evolution of species as well as long-
term response to selection in breeding programs 

(Alvarez-Castro & Carlborg 2007; Ingileif & Yuster 
2008). An alternative to better understand the genetic 
architecture of complex traits is to include intralocus 
(dominance) and inter-locus (epistasis) interaction of 

alleles when fitting a model to a trait (Jamrozik et al. 
2005; Oakey et al. 2006; Valentina et al. 2007; 
Wittenburg et al. 2011).  However, modelling additive 
and non-additive effects simultaneously poses 
challenges in terms of computational demand, data 

Evaluation of Predictive Ability of Bayesian Regularized Neural 
Network Using Cholesky Factorization of Genetic Relationship 
Matrices for Additive and Non-additive Genetic Effects 
 Hayrettin Okut1,2,* , Daniel Gianola1,3 , Kent A. Weigel1  , Guilherme J. M. 

Rosa1,3  

1Department of Animal and Dairy Sciences, University of Wisconsin, Madison, 53706, USA 
2University of Kansas, School of Medicine-Wichita, 67214, USA  
3Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, 53706, USA 

*Corresponding Author 

Article History 
Received: 22 June 2022 
Accepted: 06 July 2022 
First Online: 09 August 2022 
 

 

Corresponding Author* 
Tel.:  
E-mail: hokut@kumc.edu 
 
 

Keywords 
Artificial neural networks 
Bayesian regularization 
Additive and non-additive 
genetic effects 
 

Abstract 
 
This study aimed to explore the effects of additive and non-additive genetic effects on the 
prediction of complex traits using Bayesian regularized artificial neural network (BRANN). The 
data sets were simulated for two hypothetical pedigrees with five different fractions of total 
genetic variance accounted by additive, additive x additive, and additive x additive x additive 
genetic effects. A feed forward artificial neural network (ANN) with Bayesian regularization 
(BR) was used to assess the performance of different nonlinear ANNs and compare their 
predictive ability with those from linear models under different genetic architectures of 
phenotypic traits. Effective number of parameters and sum of squares error (SSE) in test data 
sets were used to evaluate the performance of ANNs. Distribution of weights and correlation 
between observed and predicted values in the test data set were used to evaluate the 
predictive ability. There were clear and significant improvements in terms of the predictive 
ability of linear (equivalent Bayesian ridge regression) and nonlinear models when the 

proportion of additive genetic variance in total genetic variance (
22 / Ga 

) increased. On the 
other hand, nonlinear models outperformed the linear models across different genetic 
architectures. The weights for the linear models were larger and more variable than for the 
nonlinear network, and presented leptokurtic distributions, indicating strong shrinkage 
towards 0. In conclusion, our results showed that: a) inclusion of non-additive effects did not 
improve the prediction ability compared to purely additive models, b) The predictive ability of 
BRANN architectures with nonlinear activation function were substantially larger than the 
linear models for the scenarios considered.  
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analysis and interpretation of results. Several 
statistical and computational methods have been 
devised for studying the association between complex 
traits and high dimensional data sets. Classical single-

marker regressions and, more recently, Bayesian linear 
regression models of various types (Gianola et al. 
2011; Meuwissen et al. 2009; de los Campos et al. 
2009; de los Campos et al. 2010) are focused on 
additive inheritance and ignore interactions and non-
linearity. In fact, a study by Wittenburg et al. (2011) 
confirmed that parametric methods have difficulties in 
identifying and estimating some non-genetic effects. 
Alternatively, artificial neural networks (ANNs) provide 
a powerful technique for learning about complex traits 
by predicting the future state of an outcome variable 
based on training data. ANNs can capture non-linear 
relationships between predictors (e.g. SNP markers) 
and responses (e.g. phenotypes) and learn about 
functional forms in an adaptive manner (Okut et at. 

2011; Gianola et al. 2011). The ability of computing 
complex nonlinear relationships between response 

and input variables, including any kind of interactions 
between input variables, with many training 
algorithms available makes ANN extremely interesting 

for analysis of complex traits (Lampinen &Vehtari 
2001; Okut 2016; Okut 2021). 

One of the most serious problems that can occur 
when training an ANN is overfitting. Since the ultimate 

goal of ANN is attaining generalization such overfitting 
problems should be detected and addressed carefully. 
Bayesian Regularized Artificial Neural Network 
(BRANN) is more resistant to overcome the problem of 
overfitting problem than conventional ANN, resulting 
in improved generalization performance (Gianola et al. 
2011; Okut et al. 2013). The idea of Bayesian 
regularization (BR) is to make the network response 
smoother, through modification of the objective 
function by adding a penalty term consisting of the 
mean square of all network coefficients (Gencay & Qi 
2001). BR minimizes a combination of squared errors 
and weights, and then determines an appropriate 
combination so as to produce a network that 
generalizes well (Marwala 2007; Ripley 2007; MacKay 

2008). As such, BR can be viewed as a nonlinear analog 
of ridge regression. The Bayesian approach to neural 
network modeling consists of arriving at the posterior 
probability distribution of weights by updating a prior 
probability distribution by means of a training data set 

(Okut et al. 2013).  

The objectives of this paper were to use the ANNs 

to explore the impact of non-additive genetic effects 
(additive x additive, and additive x additive x additive) 
on the prediction of complex traits when additive and 
non-additive effects were jointly considered when 

fitting a model to a trait. For such, BRANN 
architectures differing in terms of number of neurons 

and activation functions were used and compared in 
terms of their prediction ability. Details on data 

simulation and modeling are presented in the next 

section. The scenarios used to generate data by 
including only additive or a certain portion of non-
additive genetic effects is explained in this section. On 
the second section, we summarize the results obtained 

from the different BRANNs. A final section presents a 
discussion and concluding remarks. 

 
Materials and Methods 
 
Data sets 

 
The data considered in this paper were simulated for 

5 non-overlapping generations. Two hypothetical 
pedigrees, referred to as population 1 (Pop1) and 

population 2 (Pop2), were generated. The number of 
animals in the base populations were 100 (50 nuclear 
families) and 300 (150 nuclear families), respectively. 
Animals used in the base populations were assumed to 
be unrelated and not inbred. Four additional 

generations were created with 100 and 300 animals in 
each generation for each population. Each family in the 
base population and subsequent generations had only 2 
offspring. In both populations throughout the five 
generations (base and four additional generations), 

animals were randomly mated within their generations. 
At the end of the simulation the total number of animals 

in Pop1 was 500 (274 female and 226 male) and in Pop2 
was 1500 (767 female and 733 male). A relationship 
matrix (A=CC’, here C is lower triangular Cholesky factor 
decomposition) from the animals of the 5 generations 
was then constructed for both populations and the 

elements of the lower triangular Cholesky factor 
decomposition of these relationship matrices (akl) were 
considered as input variables (pi = akl) in BRANN 
architectures.  

The phenotypic records (ti) were generated for all 

animals in the pedigree structure and were a function of 
genetic and random environmental effects from a 
normal distribution. For each generation, 50 and 150 
nuclear families consisting of the two sibs values were 
obtained by adding a normally distributed 

environmental effect with 0 mean and unit variance. 
Target variables (ti) which represent animals’ 
phenotypes were generated according to the following 
equation:  

 
𝐭 = 𝐚1 + 𝐚2 + 𝐚3 + 𝐞 
= [𝐀1/2 × 𝐮1 × σa] + [(𝐀#𝐀)1/2 × 𝐮2 × σaa]

+ [(𝐀#𝐀#𝐀)1/2 × 𝐮3 × σaaa] + [𝐮4
× σe] 

 

where a1, a2 and a3 are vectors of additive, additive x 
additive, and additive x additive x additive genetic 
effects, and e is a vector of random residual effects. In 

the equation above, the matrix A represents the 
numerator relationship matrix, is the Hadamard 

product, and u1, u2, u3 and u4 are random vectors from 
multivariate standard normal distribution, i.e. 
𝐮j~N(𝟎, 𝐈), j=1… 4, where 0 is a column vector of zeros 
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Figure 1. Artificial neural network design used in this study. The elements (akl) of relationship m  (A) were used as inputs (pi). Each 

input, pi is connected to up to S neurons via coefficients wij (j denotes neuron, i denotes input). Each hidden and output neuron has a bias 

(j denotes neuron, k denotes layer). 
)(k

jb

it̂

and I is an identity matrix. With these settings we have 
that:  
𝐚1~𝑁(𝟎,𝐀𝜎𝑎

2), 
𝐚2~𝑁(𝟎,𝐀#𝐀𝜎𝑎𝑎

2 ), 

𝐚3~𝑁(𝟎,𝐀#𝐀#𝐀𝜎𝑎𝑎𝑎
2 ) and 

𝐞~𝑁(𝟎, 𝐈𝜎𝑒
2) 

 

and that the total phenotypic variance is given by: 
Var(𝐭) = 𝐀𝜎𝑎

2 + 𝐀#𝐀𝜎𝑎𝑎
2 + 𝐀#𝐀#𝐀𝜎𝑎𝑎𝑎

2 + 𝐈𝜎𝑒
2. 

 
In the simulations, the total variance was assumed to be

2)(V 2  Tt  , and the variance of  

genetic and non-genetic effects was assumed to be

1and1 22  eG 
, respectively.  Here,

2

G
is the 

total genetic variance and
2

e
is the residual (random 

environmental) variance. Five different scenarios were 

considered as 
22 / Ga 

=0, 0.1, 0.5, 0.9, and 1 (namely, 
five different fractions of variance accounted by additive 
genetic effect) for simulating phenotypic values. 
Heritability (h2) was kept to be 0.5 for the all scenarios. 

The fractions of both non-additive effects (additive x 

additive, 
22 / Gaa 

, and additive x additive x additive, 
22 / Gaaa 

) were assumed to be equal in each model. 

For example, when the fraction of variance accounted 

by additive genetic effects was 
22 / Ga 

= 0.5 then the 

fractions of non-additive genetic effects were assumed 
22 / Gaa 

 =0.25 and 
22 / Gaaa 

=0.25 (Table 1). 
 

Feed-forward neural networks 
 

A fully connected, two-layer feed-forward BRANN 
with backpropagation was used in this study and is 
illustrated in Figure 1. In Figure 1, pi is an input vector of 

elements of the relationship matrix (akl) at the left-most 
layer. The elements of relationship matrix (Cholesky 
factorization) are connected to the neurons in a single 
hidden (middle) layer via weights (wjk) with a bias 
(intercept) specific to each neuron. For example, if there 
are S neurons in the architecture (Figure 1 depicts four 
neurons), the biases in the hidden layer are

)1()1(

2

)1(

1 ........, Sbbb
. A hyperbolic tangent and a linear 

activation function were applied to the hidden and 
output layers. The input into neuron j, prior to 

activation, is




R

k

kjkj pwb
1 . This weighted input is 

transformed (“activated”) using hyperbolic tangent 

activation function f(.) (Figure 1) as












R

k

kjkjj pwbf
1

.This activated emission is then sent to the output layer 

and collected as
 
 











S

j

R

k

kjkjjj bpwbfw
1 1

'

, where wj (j = 
1,2…,S) are weights specific to each neuron and b is 
another bias parameter. Finally, this is activated again 
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Table 1. The fraction of additive and non-additive genetic variances for the 5 different models considered. 

Models 22 / Ga   22 / Gaa   22 / Gaaa   2

e  

1 0 0.5 0.5 1 

2 0.1 0.45 0.45 1 
3 0.5 0.25 0.25 1 
4 0.9 0.05 0.05 1 
5 1 0 0 1 

2

G Total genetic variance, 2

a additive genetic variance, 2

aa additive*additive genetic variance, 2

aaa additive*additive*additive 

genetic variance. 2

e residual variance 

 

 

 

 

 

 

 

  

with linear function g(.) as 












S

j

jj bfwg
1

' (.)

. Thus, the 

output is assumed to be a linear combination of output 
from hidden neurons and a Gaussian error term N(0, σ2). 
This becomes the predicted value of ti in the training set. 
Both input and target variables were normalized prior to 
network training and BRANN training was implemented 

according to the Levenberg-Marquardt optimization 
(Foresee & Hagan 1997). After training, the output (i.e., 
the predicted value of phenotypes) is calculated as:  

 
   nibbpwfwgt jikjk

R

kjj

s

ji ...,2,1;ˆ
1

'

1        
(1) 

 
Bayesian regularization 
 

ANN conventional training aims to reduce the sum of 
squared error, F=ED. Pre-Bayesian “training” of neural 

networks involved finding the network parameters, w, 
to minimize the error term equivalent in the 
probabilistic interpretation to maximum likelihood. As 
with other highly parameterized or ill-posed problems, 
this led to overfitting (Titerington 2004). In Bayesian 

ANNs (e.g., BRANNs), the objective function F has an 
additional quadratic penalty term that penalizes large 

weights to achieve a smoother mapping. Gradient-
based optimization is then used to minimize the 

following function, which is equal to a penalized natural 
log-likelihood: 

F=βED(D|w,M)+αEW(w|M),    (2)                                                                                           

 

In equation (2), the 




n

i

iiD ttMDE
1

2)ˆ(),|( w

and 

EW(w|M) 




m

i

iw
1

2

 are the sum of squares of error and 
network weights, m is the number of weights, and α and 
β are positive regularization parameters which need to 

be estimated. M denotes a specific network architecture 
which consists of a specification of the number of layers, 
the number of neurons in each layer, and the type of 
activation functions used. The second part of equation 
(2) is called weight decay, which penalizes large weights 

to achieve a smoother mapping. Therefore, the Bayesian 
approach involves a probability distribution of network 
weights, so the predictions from the network can also 

be casted in a probabilistic framework (Sorich et al. 

2003).  Conditional on the data, given α, β, and M, the 
posterior distribution of w is: 

 

),,|(

),|(),,|(
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MPMDP
MDP






ww
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  , (3) 
 
where D is the training data set. In (3) the 
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exp
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m

MP

  is the 

prior distribution of weights and 𝑃(𝐷|𝑤, 𝛽,𝑀) is the 
likelihood function, which is the  

probability of the data given w, while 
𝑃(𝐷|𝛼, 𝛽, 𝑀) ∫𝑃(𝐷|𝑤, 𝛽, 𝑀)𝑃(𝑤|𝛼, 𝑀)𝑑𝑤 is a 
normalization factor, which does not depend on w 
(Kumar et al. 2004). In this Bayesian framework, the 
optimal weights should maximize the posterior 
probability P(w | D, a, P, M ). Maximizing the posterior 
probability of w is equivalent to minimizing the 
regularized objective function F = βED+aEw (Foresee and 

Hagan 1997). While minimization of F is identical to 
finding the (locally) maximum a posteriori estimates 
wMP, minimization of ED by back-propagation is identical 

to finding the maximum likelihood estimates wML if n>m, 
where m is the number of the parameters (MacKay 

2008). Consider the joint posterior density 

)|(

)|,(),,|(
),|,(

MDP

MPMDP
MDP


 

    (4)                                                                               
If the prior density P(α, β|M) is uniform, 

maximization of P(α  β | D, M) with respect to α is 
equivalent to the maximization of  the likelihood P(D | 

α, β, M) in equation (4). This likelihood is evidence for a 
and β, which is the normalization factor for equation (3). 
According to MacKay (1992) we have; 

2/2/ )/()/(

),(

),,,|(

),|(),,|(
),,|(

mn

FZ

MDP

MPMDP
MDP








 

w

ww

, (5) 
where n and m are the number of observation and 
parameters, respectively. The objective function, F = 

βED(D|w,M)  + αEW (w|M) has the shape of a quadratic 
in a small area surrounding the minimum point of the 

posterior density wMAP, where the gradient is zero. A 
Laplacian approximation to ZF(α,β) in equation (5) yields;  
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))(exp(),( 2

1
A MAP

F wFZ 


PMH
, (6)                                                                                          

where
PMH A

is the Hessian matrix of the objective 
function evaluated at wMAP. 

Bayesian optimization of the regularization 

parameters requires computation of the Hessian matrix 
of the objective function F evaluated at the optimum 
point wMAP (Xu et al. 2006). However, directly computing 
the Hessian matrix is not always necessary. As proposed 
by MacKay (1992), the Gauss-Newton approximation to 
the Hessian matrix can be used if the Levenberg-
Marquardt (LM) optimization algorithm is employed to 
locate the minimum of F (Shaneh & Butler 2006). The LM 
algorithm is a robust method for approximation function 
and LM modification to Gauss-Newton is 

(J’J + µI) δ = J’e, (7)                                                                                                                   
and the Hessian matrix can be approximated as:  

'H J J , (8) 
where J is the Jacobian matrix that contains first 
derivatives of the network errors with respect to 
network parameters (the weights and biases), δ is the 
parameter update vector and µ is the Levenberg`s 

damping factor. The gradient is computed as g=J’e. The 
µ is adjustable at each iteration and guides to the 
optimization process. If reductions of the cost function 
F are rapid, then the parameter µ is divided by a 

constant (c) to bring the algorithm closer to the Gauss–
Newton. On the other hand, if an iteration gives 
insufficient reduction in F, then µ is multiplied by the 
same constant giving a step closer to the gradient 
descent direction. Therefore, the Marquardt-Levenberg 

algorithm can be considered a trust-region modification 

to Gauss-Newton designed to serve as an intermediate 
optimization algorithm between the Gauss-Newton 
method and the Gradient-Descent algorithm (Battiti 
1992). 

If the expression γ = m – 2αMAPtr(HMAP)-1 refers to the 

effective number of parameters in the neural network, 
where m is the total number of parameters (0 ≤  γ ≤m), 
then it can be shown (MacKay 1992; Xu et al. 2006) that: 

 
)(2)(2 MAP

D

MAP

MAP

w

MAP

wE

n
and

wE








 (9) 

 
 Analyses  

 
MATLAB (2009) was used for fitting the BRANN. The 

neural networks considered had two layers (hidden and 
output) and were fully connected feed-forward 

networks as shown in Figure 1. To avoid overtraining, 
improve predictive ability, and eliminate spurious 
effects caused by the starting values, the BRANNs were 
trained independently 12 times. Results were recorded 
as the average of the 12 independent runs.  The number 

of epochs used was 1000. Training was stopped if: 1) the 
maximum number of epochs was reached; 2) 
performance had met a suitable level; 3) the gradient 
was below a suitable target; and 4) the Levemberg-
Marquardt μ parameter exceeded a suitable maximum 

(training stopped when it became larger than 1010). Each 
of these targets and goals were set at the default values 
set by the MATLAB implementation. 
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Figure 2. Effective number of parameters (γ) in populations I (at the left side) and population II (at the right side).  
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Table 2. Effective number parameters and their standard deviations after 12 running for different network architectures for the 
both populations (results are average of 12 independent running). 
 

 Population I Population II 

Effective number of parameters γ Effective number of parameters γ 

Linear 1-
neuron 

2-
neuron

s 

3-
neuron

s 

4-
neuron

s 

Linear 1-
neuron 

2-
neuron

s 

3-
neurons 

4-
neuron

s 

0/ 22 Ga 

 

255.0±4
0 

245.0±3
0 

174.0±5
9 

167.0±5
9 

173.0±4
4 

707±83 
742.5±6
3 

524.0±1
63 

573.4±165 
461.8±1
79 

1./ 22 Ga 

 
267.0±3
0 

237.8±3
6 

175.6±3
6 

148.0±4
4 

149.7±4
0 

828.3±5
0 

679.1±6
0 

533.5±6
2 

553.4±168 
452.7±1
56 

5./ 22 Ga 

 

259.4±3
1 

229.3±3
0 

195.4±4
3 

155.8±4
1 

132.0±4
2 

765.5±1
68 

711.9±6
6 

671.8±1
72 

609.7±118 
422.7±9
6 

9./ 22 Ga 

 

266.6±3
4 

252.2±5
0 

222.6±3
3 

239.7±3
5 

203.4±4
4 

788.6±1
08 

719.8±8
0 

731.4±6
4 

541.8±140 
634.4±1
24 

1/ 22 Ga 

 

252.2±2
7 

226.9±2
7 

230.0±4
9 

235.0±3
8 

199.7±5
1 

848.4±6
6 

721.2±7
7 

632.6±1
40 

574.5±122
.9 

665.5±9
5 

2

a =Additive genetic variance, 2

G =Total genetic variance ( 2

G = 222

aaaaaa   ) 

 

  

Results 
 
Degree of complexity and performance of BRANN 

 
 The performance of BRANNs was evaluated in terms 

of effective number of parameters (γ) and residuals sum 
of squares in the test data set (SSEtest). The estimated 
effective number of parameters associated with each 

network evaluated is summarized in Table 2. For both 
populations, a total of 600 BRANN architectures were 
examined (50 ANN architectures and 12 replications for 
each). Our focus was on comparing performances from 
different linear and nonlinear ANN architectures under 

practical conditions while varying the proportion of total 
genetic variance contributed by additive genetic effects.  

Except for 

22 / Ga 
=0 in Pop2, the highest effective 

number of parameters (γ) was obtained from linear ANN 
architectures (linear activation function in hidden and 
output layers), indicating explicitly penalizing the 
complex models by nonlinear BRANN. For example, γ 

was equal to 255.0±30 and 173.0±44 in BRANNs for 
linear and nonlinear, respectively, with 4 neurons when 
the genetic model was assumed to be purely non-

additive (

22 / Ga 
=0). Here, γ reduced drastically 

(32%) even though the nominal number of parameters 
(m) increased from 501 to 2509 for the same BRANN 
architectures (Table 2 and Figure 2). In most cases 

(except for 

22 / Ga 
 = 0 and 

22 / Ga 
 = 0.1 in Pop2) 

the smallest effective number of parameters attained 
was obtained either with 3 or 4 neurons in nonlinear 
(hyperbolic tangent activation function in hidden layer) 

BRANN architectures, suggesting the penalization ability 
of ANNs via Bayesian regularization in complex 

nonlinear models to attain better performance. 
The residuals sum of squares (SSE) in test data sets 

showed the same pattern in both populations across 

BRANNs: SSE substantially increased as the proportion 
of genetic variance accounted for by additive genetic 

effect (

22 / Ga 
) increased. The SSE of linear models 

for Pop1 and Pop2 ranged from 164.3 to 668.6 and from 
525.1 to 1941.6, respectively. The minimum and 
maximum values of SSE in both populations were 

obtained for 

22 / Ga 
≥ 0.1 and 

22 / Ga 
 = 1. Except 

for 

22 / Ga 
=0.5 in Pop2 with two neurons, the SSE of 

nonlinear models were smaller than those of linear 

models when the ratio of additive genetic variance 

increased (

22 / Ga 
>0). For example, the smallest SSE 

values in Pop1 and Pop2 for 

22 / Ga 
=0.9 were 

observed with 4 neuron nonlinear models which were 

14 and 16% less than the linear models in the both 
populations. In general, the smallest SSE as well as γ 

values in both populations for 

22 / Ga 
≥0.5 was 

attained with 3 or 4 neuron architectures, indicating the 
capability of BRANN to improve performance of 
complex models via shrinking and reducing the SSE 
(Table 3). 

 
Predictive ability 
 

The predictive ability (generalization) of the 
networks was assessed by means of the correlation 
between predicted and phenotypic observed values in 
the testing set and the distributions of weights. Such 

predictive correlations are given in Table 4 and Figure 3.  

There were clear and significant improvements in terms 
of the predictive ability for both linear (equivalent 

Bayesian ridge regression) and nonlinear models when 
the proportion of additive genetic variance increased. In 
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Table 3. Residual sum of squares for BRANNs in testing data set for five models and two populations. 
 

       22 / Ga  =0     22 / Ga  =0.1     22 / Ga  =0.5     22 / Ga  =0.9       22 / Ga  =1 

 Population I 

Linear 164.3 165.2 271.1 651.8 668.6 
Nonlin-1neuron  174.1 150.9 257.7 543.6 620.5 

Nonlin-2neurons 165.7 149.4 247..2 515.0 611.0 
Nonlin-3neurons 162.6 151.4 246.6 571.5 593.1 
Nonlin-4neurons 152.6 157.1 243.1 492.9 576.0 

 Population II 

Linear 525.1 530.8 782.8 1716.2 1941.6 
Nonlin-1neuron 542.8 486.8 758.5 1608.6 1771 
Nonlin-2neurons 495.6 502.9 791.9 1546.4 1740.8 
Nonlin-3neurons 492.2 486.3 733.4 1461.7 1771 

Nonlin-4neurons 471.9 495.4 730.1 1446.7 1770 

  

general, increasing in predictive ability was quite distinct 
for the nonlinear BRANN, but more markedly so for 

genetic models with 
22 / Ga 

>0.5.   

The predictive abilities were smallest when 
22 / Ga 

<0.5, intermediately for 
22 / Ga 

=0.5 and highest when 
22 / Ga 

>0.5 for all BRANNs, suggesting that the high 
ratio of additive genetic variance to total variance might  

be a good approximation for analyzing the quantitative 

traits. For example, improvements 
22 / Ga  = 1 vs

22 / Ga 

= 0 in Pop2, were 57, 67, 54, 53 and 68 % for linear and 
nonlinear BRANN architectures of 1, 2, 3 and 4 neurons, 

respectively. There was no consistent upward trend on 
predictive correlations from linear to nonlinear BRANN 

when 
22 / Ga 

≤0.1. Further, the same findings were 
observed for 𝜎𝑎

2/𝜎𝐺
2≤0.1 when the number of neurons in 

the hidden layer gradually increased in the both 
populations (Table 4). For example, the predictive 

correlations for the linear model for the Pop1 and Pop2 
when 𝜎𝑎

2/𝜎𝐺
2= 0 were 0.406 and 0.358, respectively. 

 The highest correlations for both population for 
22 / Ga 

= 0 with nonlinear BRANN were 0.441 (in 3- 
neuron BRANN architecture) and 0.407 (in 2-neuron 
BRANN architecture). Similar patterns were found for 

22 / Ga 
=0.1 for both populations. In contrast, the 
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Figure 3. Predictive correlations in testing data set (rtest) for different ANN architectures for both populations’ data sets for 
network architectures used in both populations. 
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Table 4. Predictive correlations of BRANN in testing data set for five models and two populations . 
 

       22 / Ga  =0     22 / Ga  =0.1     22 / Ga  =0.5     22 / Ga  =0.9       22 / Ga  =1 

Population 1 

Linear 0.406 0.336 0.391 0.486 0.474 
Nonlin-1neuron 0.409 0.377 0.451 0.536 0.567 

Nonlin-2neurons 0.433 0.366 0.436 0.566 0.563 
Nonlin-3neurons 0.441 0.407 0.477 0.519 0.54 
Nonlin-4neurons 0.434 0.379 0.436 0.546 0.589 

Population 2 

Linear 0.358 0.397 0.487 0.521 0.563 
Nlin-1neuron 0.355 0.402 0.513 0.569 0.593 
Nlin-2neurons 0.407 0.394 0.505 0.618 0.625 
Nlin-3neurons 0.391 0.397 0.512 0.619 0.599 

Nlin-4neurons 0.355 0.381 0.525 0.605 0.596 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Distributions of weights in Pop2 for 

22 / Ga  =0, 
22 / Ga  =0.5 and 

22 / Ga  =1 for linear (upper row) and nonlinear 

BRANN with 4 neurons in hidden layer (bottom row). 
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predictive ability of nonlinear BRANN architectures 
increased as the proportion of additive genetic variance 

increased beyond 0.5 (
22 / Ga 

 ≥0.5). 

The distribution of weights after training a network 
also provides some indication of predictive ability; 
smaller values suggest better generalization while larger 
weights indicate a more local representation. The 
weight decay penalty term in the objective function in 

BRANN causes the weights to converge to smaller 
absolute values.  Figure 4 depicts the distribution of 

weights in Pop2 for the linear and nonlinear networks 

with 4-neuron architectures for the 
22 / Ga 

=0, 
22 / Ga 

=0.5 and 
22 / Ga 

=1 scenarios. The average sum of 

squares of weights when 
22 / Ga 

=0 were 7.05 and 2.8 
for linear and nonlinear specifications, respectively; 

however, the 7.05 for the linear model was the sum of 

squares of about 1500 weights whereas the 2.8 for the 
nonlinear model with 4 neurons was the sum of squares 

of about 6000 weights (4 x 1500). Similar results were 
obtained for Pop1 (not depicted here), indicating how 
strong the shrinkage is (towards 0) when utilizing 
BRANN.  The weights in ANN are the measure the 
importance of the inputs. The contribution value of an 

individual input is simply the product of the absolute 
value of the weights going from a specific input unit to a 
specific output, summed over the S hidden units. Figure 
4 shows that the contribution of an input variable to the 
target variable becomes larger as the proportion of 
additive genetic variance is increased. Therefore, the 
majority of weighs lie between ±0.05 and ±0.1 for 

22 / Ga 
=0 and 

22 / Ga 
=1 with four neurons, indicating 

the relative importance of input on the output increases 
as proportion of additive genetic variance increase. 

22 / Ga  =0 
22 / Ga  =0.5 

22 / Ga  =1 
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Discussion 
 

In contrast to the early generation of the 
quantitative genetics, the non-additive components 

have a clear mechanistic knowledge in the framework of 
scientific advancement of the network model and the 

theories of systems quantitative genetics (Zhu et al. 
2009). Many research articles (Bagheri & Wagner 2004; 

Bradshaw et al. 2005; Weinreich et al. 2005; Le Rouzic 
et al. 2008) have documented that there exists a 
widening consensus about the evolutionary operability 
of non-additive genetic components. With this study, 
the BRANN architectures differing in terms of number of 

neurons and activation functions were used to make 
predictions when additive and non-additive effects were 
jointly involved in fitting a model to a trait. It was shown 
that the inclusion of non-additive effects did not 
improve the predictive ability compared to purely 

additive models (Table 4). Only the 

22 / Ga 
=0.9 

scenario generated similar prediction abilities with all 

BRANN architectures compared to purely additive 
models. In contrast, the predictive ability of non-linear 

models decreased drastically when the proportion of 

non-additive effects (
)/and/ 2222

GaaGaa a 
 were 

assumed to be 0.5 or more. These results are in 
agreement with Allison et al. (2009; Calus, 2010) as they 
reported that partitioning into a complex model for non-
additive effects is unnecessary, as these often represent 
a relatively small proportion of the total genetic 
variance. Results from our findings and other studies 
(Allison et al. 2009; Hill et al. 2008; Wittenburg et al. 
2011) suggest that even when non-additive genetic 
effects are present, the total genetic variation may be 

explicable to a large degree by additive genetic variance 
(Pirchner 1983).   

Results documented here are based on the additive 
genetic relationship information. Even though the data 

set used here is from a simulation study, it does provide 
a practical illustration of the methods presented. Given 
advances in molecular technology it is now easy to have 

genome-wide scans with more than one million SNPs for 
developing additive and non-additive relationship 

matrices with information from molecular markers. 
Genomic information can provide a more accurate 
representation of the relationships between individuals 
rather than using relationships based on pedigree 
information only. Gianola et al. (2011) reported that the 
use of genomic relationships led to a more reliable 
prediction of phenotypes than the use of pedigree 
information. The relative increase in strength of 
association, as measured by the correlation, is much 
larger in those predicted from genomic information 
than those from pedigrees. The same conclusion has 
been portrayed by Habier et al. (2007). 

Traditionally, statistical theory and algorithms have 
been well developed for linear relationship models. 
However, quite often the relationship between 

variables requires nonlinear methods to allow for 

successful prediction of properties of interest (Hoffman 
et al. 2008). However, linear and nonlinear parametric 
statistical approaches have limited flexibility for 
modeling the high-order, non-linear interactions that 
may be important in complex traits (Gianola et al. 2006; 

Moore 2010). On the other hand, neural networks have 
the potential to capture non-linear relationships and 
may be useful in the study of quantitative traits under 
complex gene action, given suitable inputs. A nonlinear 
transformation (the hyperbolic tangent sigmoidal used 

herein) in 
  ;ˆ

1

'

1 bbpwfwgt jikjk

R

kjj

s

ji  

modifies the connection strength between additive 
relationship (Cholesky factor decomposition) and 
phenotype in an adaptive manner underlying the 
potential for an improvement in predictive ability (Okut 

et al. 2013). Our results revealed that the sigmoidal-type 
activation function used in the hidden layer in BRANN 
models outperformed the linear models. The predictive 
ability of BRANN architectures with nonlinear activation 
function were substantially larger than the linear 

models for the scenarios considered, except for 
22 / Ga 

=0.1 in the Pop1. In a recent study, it was shown that 
non-linear neural networks outperformed a benchmark 
linear model when predicting phenotypes, especially in 
inbred wheat lines where cryptic gene actions and 
interactions are expected (Gianola et al. 2011).  

The Levenberg-Marquardt algorithm was adopted to 
optimize weights and biases because previous 
evaluations with networks used a smaller number of 
weights to indicate that it was a suitable method 
(Demuth et al. 2009). However, the Levenberg-
Marquardt is sensitive to initial values of weights as well 
as outliers in the data. These may lead to a overfitting 
problem in ANN. In the training process, overfitting 

often occurred, leading to loss of generalization of the 
predictive model. Bayesian regularization proposed by 
MacKay (1992) was used to avoid over-fitting and 
improve generalization. Adding Bayesian regularization 
to the Levenberg-Marquardt enables it to overcome the 

problem invoked in interpolating noisy data and 
overfitting. Since evidence provide an objective 

Bayesian criterion for stopping training, they are difficult 
to overtrain (Winkler & Burden 2004). The problem of 
overfitting and overtraining are also dealt with by this 
method so that the production of a definitive and 
reproducible model is attained.   

Because highly parameterized models are penalized 
in the Bayesian approach, we were able to explore 

complex BRANN architectures. The complexity of a 
network is related to both the number of weights and 
the size of the weights. A model selection criterion 

related to complex BRANN is concerned with the 
number of weights. The more weights there are, relative 
to the number of training cases, the more overfitting 
amplifies noise in the target variables. For the networks 
trained with Bayesian regularization, we examined how 
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the effective number of parameters γ varied with 
architecture. As shown in Table 2, even though the fold 

number of parameters varied from about 501 to 2009 in 
Pop1 and from 1501 to 6009 in Pop2, the effective 
number of parameters varied only from 199.7 to 252 

and from 665 to 848, for 

22 / Ga 
=1 on average, 

indicating the effect of regularization was effective. The 
weight decay penalty term in objective function, F = βED 
+ αEW in BRANN causes the weights to converge to 

smaller absolute values than what they otherwise 
would. Thus, the effective number of parameters used 
in the models is less than the number of weights, as 
some weights do not contribute to the models. In the 
linear model this form of weight is equivalent to the 

ridge regression.  
  

Conclusions 
 

The Bayesian learning with a nonlinear model 
outperformed the linear model when the entire or 
considerable part of the total genetic variance was due 
to additive genetic effects. This was evident in our study 

when 50% or more of the total genetic variance was 
explained by additive genetic effects. BRANN 
architecture with a nonlinear activation function and 
linear models had similar predictive ability when the 

entire (

22 / Ga 
=1) or a considerable part (

22 / Ga 
= 

0.9) of the total genetic variance was due to additive 
genetic effects. ANNs are a promising tool to handle 

complex data situations. Bayesian regularization ANN 
allowed estimation of all connection strengths even 
when n<<p, and the effective number of parameters 
was much smaller than the corresponding nominal 
number. The optimal values of posterior distribution of 

the connection strengths in BRANN can be automatically 
obtained through Bayesian regularized methods. This 
facilitates the selection of regularization parameters, 
possesses good robustness and excellent fitting.  These 
advantages might even be more pronounced if further 
research can be done concerning the interpretation of 
their parameters. 

In summary a feed forward ANN with BR was used to 
assess the performance and predictive ability of 
different nonlinear ANNs and linear models for complex 
traits with genetic architectures. It was shown that the 

inclusion of non-additive effects did not improve the 
predictive ability compared to purely additive models. 
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