POSTPARTUM SÜRÜNSUZ SÜT İNEKLERİNdE PRID UYGULAMASI SONRASI
OVARYUM ULTRASONOGRAFİSİ VE FERTİLİTE PARAMETRELERİNİN
DEĞERLENDİRİLMESİ

(The Ultrasonographic Evaluation of Ovarian Function and The Effects of PRID
Implementation on Fertility Parameters in Dairy Cattle without Postpartum Reproductive
Problems)

Gaye BULUT

ÖZET

Bu çalışmada, postpartum fertilitenin değerlendirilmesinde ultrasonografik muayenin uygulanımı ve geç postpartum dönemde PRID (Progesterone-Releasing Intravaginal Device) uygulamasının fertilitite parametrelerine olan etkisi ortaya konulması amaçlandı. Çalışmada pp 25 gününün tamamlanmış, sağlıklı 30 baş Holstein inek kullanıldı. Postpartum 25-46 günlerde haftada bir rektal ultrasonografi ile uterus ve cervix involusyonu takibi yapıldı. Bu sürece uterus ve cervix’in involusyonu longitudinal çapları ölçülerek değerlendirildi. Bu muayeneler sonucu inekler 15’erli 2 gruba ayrıldı. Grup I’e 12 gün süre ile PRID intravaginal yolla uygulandı ve uygulama bitimi sonrası östrus semptomları çok şiddetli (+++), orta şiddetli (+) ve az (+) olarak derecelendirildi. Östrus semptomu gösteren inekler 12 saat sonra rektal ultrasonografi ile preovulator follikül tespit edilerek suñ tohumlama yapıldı ve üçüncü tohumlama sonrasında kadar ki alman sonuçlar değerlendirildi. Tohumlama sonrası 25-30. ve 45-60. günlerde ultrasonografi ve rektal palpasyona gebelik teşhisi yapıldı. PRID uygulamasının sona ermesini izleyen östrus yoğunluğu (+) olarak sadece tek hayvanda tespit edildi. Orta şiddetli (+++) östrus semptomları ise grup I’de % 53.3, kontrol grubunda % 26.7 olarak belirlendi. Çok şiddetli (+++) östrus yoğunluğu grup I ve II’de sırasıyla % 40.0 ve % 73.3 olarak tespit edildi. Preovulator follikül çapi ortalamaları grup I’de 16.8±0.06 mm ve grup II’de 18.8±0.15 mm ölçüldü. Uygulama bitimi-östrus görülme zamanı grup I’de 2.00±0.26 gün olduğu bulundu. Uygulama bitimi gebe kalma aralığı grup I ve II’de 96.14±6.98 gün, 83.33±5.39 gün olarak belirlendi. Her iki grup içinde fark istatistikçi açısından anlamli bulunmamış (P>0.05). Grup I ve II’de ilk tohumlama gebelik oranı (ITGO) ve toplam gebelik oranı (TGO) sırasıyla, % 13.33; % 60.0 ve % 93.33; % 100 olarak belirlendi. Servis periyodu grup I ve II için sırasıyla 154.14±6.98 gün ve 130.13±5.38 gün olarak belirlendi. Her iki grup içinde fark istatistikçi açısından anlamli bulunmamış (P<0.05). Grup I ve II’de tohumlama indeksi (TI) sırasıyla 2.2 ve 1.5 olarak saptandı. Sonuç olarak yapılan çalışmada PRID uygulamasının östrus belirtilerini açısından etkili olduğu, ancak gebelik oranı üzerine etkiliğini bulunmadığı saptandı. Ve ayrıca ineklerde postpartum fertilitenin ultrasonografik yöntemle değerlendirilmesinde etkin olduğu tespit edildi.

Anahtar Kelimeler: Gebelik oranı, Östrus Belirlenmesi, PRID, Senkronizasyon, Sütçü İnekler, Ultrasonografi

*Doktora tezinden hazırlanmıştır.
SUMMARY

This study aims to evaluate the suitability of sonography for prediction of postpartum fertility and to find out the effects of PRID (Progesterone-Releasing-Intravaginal Device; 1.55 g progesterone and 10 mg oestradiol benzoate) on fertility parameters of cows in late postpartum. 30 healthy Holstein cows, which completed the postpartum period of 25 days, were used in the study. Uterus and cervix involvements were monitored by transrectal sonography at 7 day intervals between day 25 and day 46 postpartum. In this process, we assessed uterine and cervix involvements by measuring the longitudinal diameter of the uterine and cervix. As the result of these examinations, cows were divided into 2 random groups each consisting of 15 cows. Group I was inserted PRID intravaginally for 12 days and after the end of treatment, estrus was graded as severe intensity (+++), moderate intensity (++), and low intensity (+). Cows observed in behavioral estrus were artificial inseminated after 12 hours as a pre-ovulatory follicle was detected with rectal ultrasound and the results until third inseminations were evaluated in all groups. Pregnancy estimations were done at between 25-30 days and 45-60 days with ultrasound and rectal palpation after artificial insemination. Following the end of PRID treatment, it was detected that only one cow was observed estrus as low intensity (+). The percentage of oestrus as moderate intensity was determined 53.3 % for Group I and 26.7 % for control group. The estrus as severe intensity was determined 40.0 % and 73.3 % for Group I and II, respectively. The means diameter of pre-ovulatory follicle were 16.8±0.06 mm for Group I, and 18.8±0.15 mm for Group II. It was found that the intervals between the end of the PRID treatment and time of behavioral estrus were 2.00±0.26 days for Group I. Intervals between the end of treatment and conception were determined as 96.14±6.98 days and 83.33±5.39 days for Group I and II, respectively. The difference between these two groups was not statistically important (P>0.05). Conception after first insemination and total conception rates were 13.33 %; 60.0 % and 93.33 %; 100 % for Group I and II, respectively. Service period was 154.14±6.98 days and 130.13±5.38 days for group I and II, respectively. The difference between these two groups was found statistically important (P<0.05). Services per pregnancy was 2.2 and 1.5 for Group I and II, respectively. As the result of this study, PRID treatment was found to be effective for the induction of behavioral estrus but ineffective on pregnancy rate. And also ultrasonographic evaluation of postpartum fertility in dairy cows was found to be effective.

Key Words: Dairy cows, Oestrus Detection, Pregnancy Rates, PRID, Synchronization, Ultrasonography

GİRİŞ

Sığır cinsine ait işletmelerde başarının reproduktif etkinlikle direkt bağlantılıdır. Ekonomik bir yetiştiricilik için temel şart, her inekten yılda bir kez buzağı alınmasıdır. İşletmelerde ilk karşılaşılan problem östrusun tespit edilmesindeki eksiklikler oluşturulmaktadır. İkincisi ise sunu tohumlama başarı oranı her yıl hemen hemen % 1 oranında azalmaktadır. Ayrıca, ilk tohumlama yaşının geçmesi, doğumdan sonraki ilk tohumlama aralığı (50-85 gün) ve servis periyodunun uzaması, her inekin yaşımı boyunca vereceği toplam buzağı sayısı ve toplam sütt veriminde azalma yol açmaktadır (13, 21).

İneklerde diğer evcil hayvanlara göre östrusun daha kısa sürümesi yetiştiriciler tarafından tespit edilmesini zorlaştırmaktadır (12). Östrus tespiti, reproduktif performansı
etkileyen en önemli faktördür (39). İşletmede kaçırılan veya yanlış tespit edilen östruslar ekonomik kayıplara neden olmaktadır (33).

Östrusun tespitindeki yetersizlikler, östrusun düzenlisliğinin en temel nedenidir. İneklerde östrus birçok yöntemle takip edilmektedir. Bu amaçla günde 2-3 kez, yaklaşık 20-30 dakika süre izlener ekstruslar yaklaşık % 60 (iki kez gözlemectediği takdirde) ile % 90 (üç kez yapılan gözlemlerde) oranında tespit edilebilmektedir (4, 29).

Son zamanlarda östrus senkronizasyonunda progestinlerden faydalınlıktaadır. Bunlar melengestrol acetat, progesteron salan intravaginal araçlar ve norgestomate implantlar dolaşmaldaki progesteron (P4)’ün konsantrasyonunu arttırmak, premature östrusu ve tamamlanmamış luteal regresyonu önlemek için kullanılmaktadır (35). İneklerde östrus sıklığının kontrolünde ya P4 ile yapay bir corpus luteum (CL) gibi etki sağlanmakta veya luteolitik etkili hormonlar kullanılıp corpus luteum regrese edile oluna gidilmektedir (3, 27).

Östrus’a doğru dolaşında azalan P4 ve oluşan yeni folliküler evrede üretilen östrojen endomüterium’da spesifik luteal oksitosin reseptörlerin formasyonunda görev alırken, aynı süreç içinde luteal oksitosinler (luteolizis) endometrial hücre reseptörlerine bağlanarak PGF2α salınımı uyarmaktadır (17). Neticede, östradiol’ün luteolizisin’eki şekilde kritik önemine sahip olduğu anlaşılmaktadır (9).

Progesteron ve progestagenlerden, gonadotropinlerin salınımı kontrol altında tutularak faydalanılmaktadır. Progesteron hormonu günümüzde ineklere çoğulukla intravaginal veya deri altı yoluyla uygulanmaktadır (32). Egzogen progesteron kaynağı uzaklaştırıldığında, kandaki progesteron konsantrasyonu düşer ve LH salınımı artar. LH salınının artması ile östrus belirtileri görülür ve uygulama sırasında gelişen dominant follikül (DF) ovula olur. Progesterone salan intravaginal araç (PRID) progesteron ve östradiol benzoat içermektedir. PRID vaginaya uygulandığında gündelik yaklaşık 60 mg progesteron salınmaktadır. Vaginada 9 ile 12 gün kadar tutulan PRID’in çıkartılmasından 2-3 gün sonra östrus belirtileri görülebilir (19).

Ovulasyon senkronizasyonunun başarısı, uygulama sonunda corpus luteum’un olmaması ve seçilmiş yeni dominant follikülün varlığına bağlılmaktadır. Progesteron tedavisinin süresi, yeni dominant follikül gelişimi için belirlenmiş zaman aralığına ve kullanılan hormona bağlıdır. Uygulamanın başlangıcı için seçilen hormon eğer GnRH ise PRID’in uygulama süresi 5-7 gün; östradiol benzoat ile başlangıç yapılacağsa, 7-12 gün olarak belirlenmiştir (26). Kimi araçtırmacılardan (24) 6-12 gün süreyle PRID uygulamaları sonucunda % 66.7-90 oranında östrusların görülüleceğini bildirmektedirler. Zonturlu ve ark. (40)’ın yaptıkları çalışmada ise siklik hayvanlarda % 87.5, ovaryumları inaktif olan hakiki anöstrus semptomu gösteren ineklerde ise % 100 oranında östrus tespit etmiştirler.

Bazı araçtırmacılardan (19, 22, 30) PRID ile yapılan çalışmalarda ilk tohumlamada gebelik oranının % 27.8 ile % 73 arasında değiştiğini bildirmektedirler. Zonturlu ve ark. (40) gebelik
başına düşen tohumlama sayısını 1.6 olarak belirlemişlerdir. Diğer bazı araçtırıcılar da (19, 30) gebelik başına düşen tohumlama sayısının 1.2–2.2 arasında değiştiğini bildirmektedirler. Anöstrüs semptomu gösteren ineklerde 12 gün süreyle PRID uygulamalarının reproduktif performansı artırdı ve siklukların düzenli hale gelmesinde etkili olduğu bildirilmektedir (40).

Progesteron ve prostaglandin uygulamalarını takip eden östruslarda gebelik oranlarında %10-15 düşüş söz konusudur. Progestagenler de östrusun denetlenmesinde kullanılabilecek bazı ovulasyonun gerçekleşmesini engelleyemektedir. Ancak tohumlama zamanı kaçırılmış olduğundan hayvanın gebe kalma şansi ortadan kalkmaktadır (3, 10). Östrus artışında birçok yöntem bulunamakla olup (15), yeni yöntemler üzerinde çalışmalar devam etmektedir.

Bu araştırmada; vaginal yolla progesteron hormonu uygulanarak ovaryumlardaki follikül dinamikini kontrol altında alman ineklerde, uygulama öncesinde ve bitiminiz izleyen östrus evresinde dominant follikülün gelişim sürecini, rektal ultrasonografi ölçümleri ile değerlendirilmesi amaçlanmıştır. Bunun yanı sıra alanla ölçümlerin ineklerdeki bazı fertilitite ölçümlerine olası etkileri de incelenmiştir.

MATERİAL VE METOT

Çalışmanın hayvan materyalini Bursa-Karacabey ilçesinde bulunan Ömer Matlı Hayvansal Üretim Eğitim ve Araştırma Merkezinde yetiştirilen, bir örnek total rasyonla (Misir silajı, yonca, buğday samanı, konsantrte yem, misir gluteni, soda, maya, MgO) beslenen, yaşları 2-5 arasında olan vaginal, ultrasonografi ve rektal muayaneler sonrası herhangi bir klinik problem taşımadığı belirilen toplam 30 baş Holstein-Friesian ırkı sağırlar inek oluşturdu.

Çalışmada ultrasonografi muayeneler için işletmeye ait 5-7.5 MHz, lineer rektal prob donanımı real-time B-mode portatif ultrasonografi cihazı (MINDRAY DP-6600) kullanıldı.

Çalışmada kullanılan toplam 30 baş inek iki gruba ayrılıdı. Grup I (n=15) uygulama grubu, Grup II (n=15)’e ait olan inekler ise kontrol grubu olarak düzenlendı.

Her iki çalışma grubunda da gün içerisinde üç kez, 20’şer dakika süre ile olmak üzere östrus gözlemleri yapıldı. Gözlem sonucu östrus belirtileri (+++), (++), (+) olarak derecelendirildi. (+++): Aşama izin verme, ++: çara akintisi, +: diğer hayvanlara aşma, huzursuzluk, bağırmı, vulvanın hiperemik ve ödemli olması, gruplar halinde bir araya toplanma, yem tüketiminde ve süt veriminde azalma).

Tohumlama sonrası 25-30. günlerde ultrasonografi cihazı ile gebelik teşhisini; 45-60. günlerde ultrasonografi cihazı gebelik teşhisini gerçekleştirdi ve rektal palpasyon ile gebelik kontrolü tekrarlandı. Hayvanların gebelik takibi üçüncü tohumlamaya kadar yapıldı. Üçüncü tohumlamanın ardından gebe olmadıkları belirlenen ineklerin sonraki tohumlama sonuçları değerlendirildi ve bu hayvanların gebelik sonucu negatif olarak kabul edildi.

Tek ve üç tohumlama sonrasında fertilitite ölçütlerinin değerlendirilmesinde; Uygulama bitimi- Östrus aralığı, Uygulama bitimi- Gebe kalma aralığı, Tl, ITGO, gebelik indeksi (GI), TGO faydalanılıdı.

BULGULAR

Postpartum 25-46. günler arasında uterus ve cervix’ten alınan ölçüm sonuçları

Birer hafta aralıklarla dört kez ölçülen sağ cornu uteri çapları ilk ölçümden itibaren tendrenci düşüş gösterdi.

Sağ cornu uteri çap ortalamaları arasında zamana göre değişimler istatistiksel açıdan önemli bulundu. Her muayene dönemindeki ortalamalar arası farklılar birbirinden farklıdır (Çizelge 1).

Muayene döneminle göre sol cornu çap ortalamaları da istikrarlı bir düşme gösterdi. Dönemlere göre ortalamaları

Muayene dönemlerine göre sağ ve sol cornu çapları incelemiğinde sadece birinci muayene döneminde sağ ve sol cornu çapları arasındaki farklılık önemli bulundu, diğer dönemlerdeki ortalamalar arasındaki farklılar önemsizdir.

Cervix çap ortalamaları arasında zamana göre değişim istatistiki öneme bulundu. Tüm muayene dönemi arasında farklılıklar önemlidir (Çizelge 2).

Çizelge 1. Zamana göre cornu uteri çaplarındaki değişim (mm) ($\bar{X} \pm S\bar{X}$)

<table>
<thead>
<tr>
<th>Muayene (n= 30)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sağ Cornu Uteri</td>
<td>48.35±1.05<sup>a**</sup></td>
<td>44.39±0.85<sup>b</sup></td>
<td>38.92±0.89<sup>c</sup></td>
<td>33.93±0.87<sup>d</sup></td>
<td>***</td>
</tr>
<tr>
<td>Sol Cornu Uteri</td>
<td>42.62±1.42<sup>a**</sup></td>
<td>41.60±1.17<sup>a</sup></td>
<td>37.13±0.92<sup>b</sup></td>
<td>32.35±0.97<sup>c</sup></td>
<td>***</td>
</tr>
</tbody>
</table>

I, II, III, IV: muayeneler; postpartum 25., 32., 39., 46. günler; **: P≤0.01; ***: P<0.001; a, b, c, d: Aynı şartda farklı harfler taşıyan ortalamalar birbirinden farklıdır.

Çizelge 2. Zamana göre cervix uteri çaplarındaki değişim (mm) ($\bar{X} \pm S\bar{X}$)

<table>
<thead>
<tr>
<th>Muayene (n= 30)</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix Uteri</td>
<td>41.25±0.93<sup>b</sup></td>
<td>38.25±0.78<sup>b</sup></td>
<td>35.25±0.66<sup>c</sup></td>
<td>31.48±0.62<sup>d</sup></td>
<td>***</td>
</tr>
</tbody>
</table>

***: P<0.001; a, b, c, d: Aynı şartda farklı harfler taşıyan ortalamalar birbirinden farklıdır.

Çizelge 3. Çalışma ve kontrol gruplarından gözlenen östrus yoğunluğu.

<table>
<thead>
<tr>
<th>Grup</th>
<th>Östrus Yoğunluğu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>++</td>
</tr>
<tr>
<td>I</td>
<td>% 6.7 (n=1)</td>
</tr>
<tr>
<td>II</td>
<td>-</td>
</tr>
</tbody>
</table>

Folikül çapı ile östrus belirtilerinin karşılaştırılması

Östrus yoğunluğu bakımından gruplar arasındaki farklılar önemli bulundu (P>0.05). Folikül çapı bakımından gruplar arasında istatistiksel açıdan önemli farklılık bulunmadı (P>0.05). Öte yandan östrus yoğunluğu ile folikül çapı arasında istatistiksel açıdan önemli yüksek ve pozitif korelasyon belirlendi ($r_s=0.56; P<0.05$). Nitekim gerekse Grup I'de (+++) östrus yoğunluğu gösterenlerde preovulatör folikül çap ortalamaları sırasıyla 18.16 mm ve 20.27 mm olarak tespit edildi. Artı iki (+) östrus gösterenlerde ise aynı sırayla 16.63 mm ve 15.25 mm olarak saptandı. Artı bir (+) östrus gösteren tek yüksek grup I'de olup preovulatör folikül çapı 15.0 mm olarak ölçüldü.

 Çalışmada elde edilen grupların fertilitite özellikleri Çizelge 4'de verildi.
Çizelge 4. Gruplara göre ineklerin fertilitede ölçüleri ($\bar{X} \pm S\bar{X}$)

<table>
<thead>
<tr>
<th>Grup</th>
<th>Uygulama bitimi</th>
<th>Doğum</th>
<th>ITGO (%)</th>
<th>TGO (%)</th>
<th>Gİ</th>
<th>TL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Östrus aralığı (Gün)</td>
<td>Gebe kalma aralığı (Gün)</td>
<td>SP (Gün)</td>
<td>(2/15)</td>
<td>(14/15)</td>
<td>2.3</td>
</tr>
<tr>
<td>I</td>
<td>2.00±0.26a</td>
<td>94.16±6.98a</td>
<td>60.00±0.26a</td>
<td>154.14±6.98a</td>
<td>13.33a</td>
<td>93.33a</td>
</tr>
<tr>
<td>II</td>
<td>14.07±2.61b</td>
<td>83.33±5.39a</td>
<td>60.07±2.61a</td>
<td>130.13±5.38b</td>
<td>60.0b</td>
<td>100a</td>
</tr>
<tr>
<td>P</td>
<td>***</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

a, b: Aynı sütunda farklı harfleri taşıyan değerler arasında istatistiksel fark belirlendi.
*P<0.05, ***P<0.001 SP: Servis Periyodu, ITGO: İlk Tohumlamada Gebelik Oranı, TGO: Toplam Gebelik Oranı, Gİ: Gebelik İndeksi, TL: Tohumlama İndeksi

TARTIŞMA VE SONUÇ

Involusyon kontrolu için rektal ve ultrasonografik muayeneler yapan Olson ve ark. (28), çomu uterilerin çaplarının, pp 25-30. günlerde 30-40 mm; pp 30-40. günlerde 20-30 mm arasında olduğunu; cervix uteriinin çapının ise postpartum 40-50. günlerde, primipar ineklerde 25-30 mm iken, multipar ineklerde 30-45 mm arasında olduğunu belirlemişlerdir. Arthur ve ark. (6) pp 25. güne cervix uteri çapının gebelikin şekillendiği çomu uteri çapından daha fazla olduğunu ileri sürmüşlerdir. Cervix uteri çapının 30. güne 7-8 cm, 60. güne ise 5-6 cm'ye küçüldüğü bildirilmiştir. Bu tez çalışmasına rektal ultrasonografi ile çomu uterilerin çaplarını pp 25-30. günlerde 40-50 mm, 30-46. günlerde ise 30-40 mm arasında ölçülmüştür. Cervix uterilerin çaplarını ise pp 25-30. günlerde 38.25±0.78 – 41.25±0.93 mm, pp 30-46. günlerde de 31.48±0.62 – 38.25±0.78 mm arasında belirlendi. Zamana göre involusyon sürecindeki değişim bulguları örneklenen literatür araştırmalarla uygunluk göstermektedir. Tez çalışmasına sözü edilen ölçümler 30 ineqn gruplara ayrılmışından önce yapıldı. Bu hayvanlarda involusyon sürecini olumsuz etkileyec pp herhangi bir
 enfeksiyöz, travmatik veya metabolik sorun görülmemiş olması bulguların benzerliğini bir ölçüde açıklayabilir.

Bu tez çalışmısında progesteron hormonu ile follikül dinamiği kontrol altına alınırken, bu hormonun follikül dinamiği üzerindeki etkileri çalışmanın ana konusunu oluşturdu. PRID'in uzaklaştırılması izleyen kontrollerde ultrasonografik ve rektal palpasyon ile değerlendirilmece yapıldı.

Yapılan çalışmada gözlemya östrus'ta olduğu belirlenenek yapılan tohumlamalarla İTGO Grup I'de % 13.33 olurken Grup II'de % 60.0 olduğu. PRID uygulanmayan ineklerde İTGO % 60.5-65.0 arasında bildirilmektedir (39). Bildirilen bu oranlar da çalışmada kontrol grubundan elde edilen oranla benzerlik göstermektedir.

Lucy ve ark. (24)'de 6-12 gün süreyle PRID uygulamaları sonucunda % 66.7-90.0 oranında östrusların görülebileceğini ileri sürmülerler. Zonturlu ve ark. (40) yaptıkları çalışmada uygulama sonrasında siklik hayvanlarda % 87.5, ovaryumları inaktif olan ineklerde ise % 100 oranında östrus tespit etmiştirler. Bu çalışmada Grup I'de % 93.33 oranında östruslar gözlemlendi. Bu bulgu literatür çalışmalara uyumu bulunmuştur.

Yapılan araştırmada östrus yoğunluğu (+++) olarak belirlenen ineklerde östrus Grup I ve II'de sırasıyla % 40 ve % 73.3, (+++) olarak belirlenenlerde % 53 ve % 26 (+) olarak belirlenen ise sadece Grup I olup % 6.7 olarak tespit edildi. Östrus süresi ve yoğunluğu hayvanlar arasında biyolojik ve çevresel faktörler, nem, sıcaklık, ışık gibi ayrıca bireysel farklılıklarla bağlı değiştiğini bildiren birçok araştırma mevcuttur (23, 29, 34).

Kaçar ve Aslan (19) diostrus döneminde bulunan ineklere 12 gün süreyle PRID uygulamışlar ve ineklerde östrüşlerin 2.5±1.3 günde yoğunlaştığını bildirmişlerdir. Başka
arastırmılarda östrusların kontrol grubunda 2.85±1.21 günde, hakiki anöstrus gösteren grupta ise 3.14±1.21 günlerde yoğunlaştığını tespit etmişlerdir (40). Bu tez çalışmasında östrus yoğunluğu Grup I’de 2.00±0.26 günde, Grup II (kontrol) ise 14.07±2.61 güne tespit edildi. Literatür bildiriliryle Grup I’de elde edilen bulgular birbirine benzer olduğu belirlendi.

Mee ve ark. (25) yapmış olduklarını İTGO’nun % 60’dan fazla olması gerektiğini belirtmişlerdir. Aynı araçtırımlar çeşitli ülkelerde bu oranın % 23-56 arasında değiştiğini bildirmişlerdir. Kimi araştırmacılar (19, 22, 30) PRID ile yapılan çalışmalarda İTGO % 27.8 ile % 73 arasında değiştiğini bildirmektedirler. İlk tohumlamadan sonra bu oranın 60-90. günlerde % 50-60 civarında olduğu bildirilmiştir. Bu çalışmada ise İTGO Grup I’de % 13.33; Grup II’de % 60 olarak tespit edildi. Grup I’deki gebelik oranındaki bu farklılık östrusün iyi değerlendirelimemesine bağlı olarak tohumlama için erken ya da geç kalınmasına bağlı olabileceğini sonucuna varılmıştır.

Son zamanlarda Tİ değer gibi gittikçe arttığı bildirmektedir. Bu artışa rağmen iyi bir süre idare programı uygulanan sürülerde bile, gebelik oranının %40 ve/veya daha alta düştüğü ifade edilmiştir (16, 31). Bazı araştırmacılar (19, 30, 40) Tİ’nin 1.2 – 2.2 arasında değiştiğini bildirmektedirler. Türkiye koşullarında 1.5 rakaminin altındağı Tİ değerleri çok iyi, 1.5–2.0 arası orta, 2.0’ nin üzerindeki değerler ise problemli olarak kabul edilmektedir (36). Bu çalışmada ise Tİ Grup I’de 2.2 ve Grup II’de 1.5 olarak hesaplanmış olup. Bu çalışmada bulunan değerlerle örtüşmektedir.

Anöstrüs sempotum süresi geçmesi postpartum ineklerde 12 gün süreyle PRID uygulamasının reproduktif performansını artırdığı ve wistiklerin düzenli hale gelmesinde etkili olduğu bildirilmiştir (40). Bu çalışmada PRID uygulamasının östrus beldeklernin açığa çıkmasına etkin, ancak gebelik elde etmede etkin olmaydiği bulunmuştur. Bu gelişmede mevsim, hastalık ve stres faktörlerinin direk veya dolaylı etkileri söz konusu olabilir.

Doğumu takiben gebe kalma süresinin, yani servis periyodunun uygun sınırlar
Postpartum sorunsuz ineklerde 45-60 günlerden itibaren tohumlamalar yapılabilir. Suni tohumlamanın başarısı büyük ölçüde östrusların hayvan sahibi/bakıcı tarafından düzenli izlenebilmesine ve doğru zamanda ineklerin tohumlanmasına bağlıdır.

Çalışmadı, gebe kalma oranının düşük bulunmasını bir diğer sebebi de iklim ve stres faktörleri gösterilebilir. Araştırmanın bazı dönemlerinde aşırı sıcak iklim koşulları erken embriyonik ömlümlere ve dolaysıyla fertitile düşümüğe neden olmuş olabilir. İneklerin önemli bir bölümnün östrüsü olmasına rağmen, östrus beldeklernerin tam anlaşılması ve tohumlama zamanındaki...

İşletmelerde reproduktif performansın arttırılmasında uygulanacak senkronizasyon programının seçimi kadar uygulama zamanını da önemlidir. Stres faktörünün fazla olduğu dönemlerde; tarнак problemleri, mastitis ve sıcak mevsimlerde senkronizasyon uygulamalarında başarı azılmaktadır. Senkronizasyon programlarıyla östrus beldeklarının açıga çıkarılarak ve/veya çıkarılmadan fertilizasyon sağlansa bile bu gibi problemler direk veya dolaylı olarak hayvanlarda gebelikin devam etmesine engel olmakta dolayısıyla erken dönemde embiyonik ölümle ya da ileri dönemde kayıplara neden olmaktadır. Bu olumsuz etkilerde göz önünde bulundurulduğunda senkronizasyon programlarının herhangi birini kullanmaya karar vermeden önce çevresel stres faktörlerinin olumsuz etkilerini kaldıracak ya da hassiflerek yaz ve sonbahar aylarında laktasyondaki yükselme verimli ineklerde fertilitle kayıplarının önüne geçilebilir.

KAYNAKLAR

